

 [image: _images/extcore.png]

ExtCore Framework

ExtCore [https://github.com/ExtCore/ExtCore] is free, open source and cross-platform framework for creating
modular and extendable web applications based on ASP.NET Core. It is built using the best and the most modern
tools and languages (Visual Studio 2019, C# etc). Join our team!

Contents

	Introduction

	Getting Started
	Samples

	Tutorial: Create Simple ExtCore-Based Web Application

	Tutorial: Create ExtCore-Based MVC Web Application

	Tutorial: Create ExtCore-Based Web Application with Storage

	Tutorial: Registering and Using a Service Inside an Extension

	Using Migrations

	Using Identity

	Fundamentals
	Working Principle

	Initialization and Startup

	Debugging ExtCore Extensions

	Getting and Reading Logs

	Default Assembly Provider

	Unified Extension Structure

	Usage for authorization middleware

	Extensions
	ExtCore.FileStorage

	ExtCore.Data

	ExtCore.Mvc

	ExtCore.Events

	Migration
	4.x.x to 5.x.x

	5.x.x to 6.x.x

Introduction

ExtCore [https://github.com/ExtCore/ExtCore] is free, open source and cross-platform framework for creating
modular and extendable web applications based on ASP.NET Core. It is built using the best and the most modern
tools and languages (Visual Studio 2019, C# etc). Join our team!

ExtCore allows you to build your web applications from the different independent reusable modules or extensions.
Each of these modules or extensions may consist of one or more ASP.NET Core projects and each of these projects
may include everything you want as any other ASP.NET Core project. You don’t need to perform any additional
actions to make it all work: any ASP.NET Core project can be used as an ExtCore-based web application extension
by default. Controllers, view components, views (precompiled), static content (added as
resources) are resolved automatically. These projects may be then added to the web application in two ways: as
direct dependencies (as source code or NuGet packages) or by copying compiled DLLs to the Extensions folder.
ExtCore supports both of these options out of the box and at the same time.

Furthermore, any project of the ExtCore-based web application is able to discover the types that are defined
inside all the projects (optionally using the predicates for assemblies filtering) and to get the implementations
or instances of that types.

Any module or extension can execute its own code during the web application initialization and startup. You can
use priorities to specify the correct order of the calls. This feature might be used for configuration,
to register services etc.

ExtCore consists of two general packages and four optional basic extensions.

General Packages

ExtCore general packages are:

	ExtCore.Infrastructure;

	ExtCore.WebApplication.

ExtCore.Infrastructure

This package describes such basic shared things as IExtension interface and its abstract implementation –
ExtensionBase class. Also it contains ExtensionManager class – the central element in the ExtCore types
discovering mechanism. Most of the modules or extensions need this package as dependency in order to be able
to discover types, extensions etc.

ExtCore.WebApplication

This package describes basic web application behavior with Startup abstract class. This behavior includes
modules and extensions assemblies discovering, ExtensionManager initialization etc. Any ExtCore web
application must inherit its Startup class from ExtCore.WebApplication.Startup class in order to work
properly. Also this package contains IAssemblyProvider interface and its implementation –
AssemblyProvider class which is used to discover assemblies and might be replaced with the custom one.

Basic Extensions

ExtCore basic extensions are:

	ExtCore.FileStorage;

	ExtCore.Data;

	ExtCore.Mvc;

	ExtCore.Events.

ExtCore.FileStorage

This extension allows developer to work with a file storage through the abstraction layer and easily replace,
let’s say, file system storage with the Dropbox or Azure Blob Storage ones without changing any code.

ExtCore.Data

By default, ExtCore doesn’t know anything about data, but you can use ExtCore.Data extension to have
unified approach to working with data and the single data storage context among all the extensions.
Data storage might be represented by a database, a web API, a file structure or anything else.

Currently ExtCore.Data supports MySQL, PostgreSql, SQLite, and SQL Server with Dapper or Entity Framework Core as ORM.
You can add your own database or ORM support.

ExtCore.Mvc

By default, ExtCore web applications are not MVC ones. MVC support is provided for them by ExtCore.Mvc extension.
This extension initializes MVC, makes it possible to use controllers, view components, views (added as resources
and/or precompiled), static content (added as resources) from other extensions etc.

Also, it allows extension to register custom routes in a specific order.

ExtCore.Events

It can be used by the extension to notify the code in this or any other extension about some events.

Getting Started

How to Start Using the ExtCore Framework

1. Add dependency on the ExtCore.WebApplication [https://www.nuget.org/packages/ExtCore.WebApplication/]
NuGet package to your main web application project.

2. Optionally (if your web application uses MVC), add dependency on the ExtCore.Mvc [https://www.nuget.org/packages/ExtCore.Mvc/]
NuGet package as well.

	Call the services.AddExtCore(extensionsPath) extension method inside the ConfigureServices method of your Startup class:

public void ConfigureServices(IServiceCollection services)
{
 services.AddExtCore(this.extensionsPath);
}

	Call the applicationBuilder.UseExtCore() extension method inside the Configure method of your Startup class:

public void Configure(IApplicationBuilder applicationBuilder)
{
 applicationBuilder.UseExtCore();
}

Your modular and extendable web application is ready to use. Now you can create an extension or use the existing ones.
ExtCore automatically discovers types, controllers, views, styles, scripts, any other static content.
Entities and repositories are also discovered automatically. You can use events to notify other extensions
about something important.

How to Create an Extension

	Create an empty .NET Razor class library project.

2. Put some classes, controllers, views, styles, scripts, and any other static content you want there. Static content
must be embedded into the resulting assembly as resources using the following line inside the project file (.csproj):

<EmbeddedResource Include="Styles**;Scripts**" />

3. Build your extension project and copy the resulting assembly’s DLL file into the extensions folder of your main
web application (or you can simply add implicit dependency on the created extension project, or on the NuGet package).

4. If your extension needs to execute some code inside the ConfigureServices method of the main
web application’s Startup class (for example, to register some service inside the DI),
you can implement the ExtCore.Infrastructure.Actions.IConfigureServicesAction interface.

5. If your extension needs to execute some code inside the Configure method of the main
web application’s Startup class (for example, to configure the web application’s request pipeline),
you can implement the ExtCore.Infrastructure.Actions.IConfigureAction interface.

It is recommended to follow the
unified extension structure [http://docs.extcore.net/en/latest/fundamentals/unified_extension_structure.html]
when developing your own extensions.

	Samples

	Tutorial: Create Simple ExtCore-Based Web Application

	Tutorial: Create ExtCore-Based MVC Web Application

	Tutorial: Create ExtCore-Based Web Application with Storage

	Tutorial: Registering and Using a Service Inside an Extension

	Using Migrations

	Using Identity

Samples

Please take a look at our samples on GitHub:

	Full-featured ExtCore 6.0.0 framework sample web application [https://github.com/ExtCore/ExtCore-Sample];

	ExtCore framework 6.0.0 sample simplest web application [https://github.com/ExtCore/ExtCore-Sample-Simplest];

	ExtCore framework 6.0.0 sample web application that uses file storage [https://github.com/ExtCore/ExtCore-Sample-FileStorage];

	ExtCore framework 6.0.0 sample MVC web application [https://github.com/ExtCore/ExtCore-Sample-Mvc];

	ExtCore framework 6.0.0 sample web application that uses a database [https://github.com/ExtCore/ExtCore-Sample-Data];

	ExtCore framework 6.0.0 sample web application that uses a Identity [https://github.com/ExtCore/ExtCore-Sample-Identity];

	ExtCore framework 6.0.0 sample web application with modular UI [https://github.com/ExtCore/ExtCore-Sample-Modular-Ui];

	ExtCore framework 6.0.0 advanced sample web application with modular UI [https://github.com/ExtCore/ExtCore-Sample-Modular-Ui-Adv];

	ExtCore framework 6.0.0 advanced sample accounting web application [https://github.com/ExtCore/ExtCore-Sample-Accounting];

	ExtCore framework 6.0.0 sample web application that registers a service inside the extension [https://github.com/ExtCore/ExtCore-Sample-Service];

	ExtCore framework 6.0.0 sample web application that uses the events [https://github.com/ExtCore/ExtCore-Sample-Events];

	ExtCore framework 6.0.0 sample API web application [https://github.com/ExtCore/ExtCore-Sample-Api].

You can also download our ready to use full-featured sample [http://extcore.net/files/ExtCore-Sample-6.0.0.zip].
It contains everything you need to run ExtCore-based web application from Visual Studio 2019, including SQLite
database with the test data.

Tutorial: Create Simple ExtCore-Based Web Application

We are going to create simple modular and extendable ExtCore-based web application. First of all,
if you are new to ASP.NET Core please visit this page [https://www.microsoft.com/net/core]. You
will find there everything you need to start developing ASP.NET Core web applications.

Create Main Web Application

Now let’s start Visual Studio and create new ASP.NET Core project:

[image: ../_images/13.png]
[image: ../_images/23.png]
Empty project is created.

Right click on your project in the Solution Explorer and open NuGet Package Manager. Switch to Browse tab and type
ExtCore.WebApplication in the Search field (be sure that Include prerelease checkbox is checked).
Click Install button:

[image: ../_images/32.png]
You can get the same result manually by opening the WebApplication.csproj file and adding next line into it:

<ItemGroup>
 <PackageReference Include="ExtCore.WebApplication" Version="6.0.0" />
</ItemGroup>

Create the appsettings.json file in the project root. We will use this file to provide configuration
parameters to ExtCore (such as path of the extensions folder). Now it should contain only one
parameter Extensions:Path and look like this:

{
 "Extensions": {
 // Please keep in mind that you have to change '\' to '/' on Linux-based systems
 "Path": "\\Extensions"
 }
}

Open Startup.cs file. Inside the ConfigureServices method call services.AddExtCore one. Pass the extensions
path as the parameter. Inside the Configure method call applicationBuilder.UseExtCore one with no parameters.

Now your Startup class should look like this:

public class Startup
{
 private string extensionsPath;

 public Startup(IHostingEnvironment hostingEnvironment, IConfiguration configuration)
 {
 this.extensionsPath = hostingEnvironment.ContentRootPath + configuration["Extensions:Path"];
 }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddExtCore(this.extensionsPath);
 }

 public void Configure(IApplicationBuilder applicationBuilder)
 {
 applicationBuilder.UseExtCore();
 applicationBuilder.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 }
}

That’s all, you now have ExtCore-based web application.

Now we need to create some extension project to show how ExtCore types discovering works.

Create Extension

Create new .NET Core class library project:

[image: ../_images/42.png]
Open NuGet Package Manager and add dependency on the ExtCore.Infrastructure package.

Create Extension class and inherit it from ExtCore.Infrastructure.ExtensionBase. Override
Name property in this way:

public override string Name
{
 get
 {
 return "Some name";
 }
}

It is enough for now.

Put it Together

We have two options to make our extension available in main web application:

	add direct dependency on Extension in the WebApplication;

	put compiled Extension.dll file to extensions folder of the WebApplication that is configured in appsettings.json file.

While the first option is too obvious let’s try the second one. Copy the Extension.dll file
to the extensions folder of the WebApplication and modify Configure method of Startup class
in next way:

public void Configure(IApplicationBuilder applicationBuilder)
{
 applicationBuilder.UseExtCore();
 applicationBuilder.Run(async (context) =>
 {
 await context.Response.WriteAsync(ExtensionManager.GetInstance<IExtension>().Name);
 });
}

It will search for the implementation of the IExtension interface, create instance of found type,
and write its Name property value on every request.

If we run our web application we will have the following result:

[image: ../_images/51.png]
It may not look very impressive, but it’s only the beginning! In the next tutorials we will see
how extensions may execute their own code insite the ConfigureServices and Configure methods, how
to use MVC and how to work with a storage.

You can find the complete source of this sample project on GitHub:
ExtCore framework 6.0.0 sample simplest web application [https://github.com/ExtCore/ExtCore-Sample-Simplest].

Tutorial: Create ExtCore-Based MVC Web Application

We are going to create modular and extendable ExtCore-based MVC web application. Please follow
this tutorial [http://docs.extcore.net/en/latest/getting_started/tutorial_simple.html]
to create simple ExtCore-based web application first. We will use it as a base.

So, we have the main web application and extension projects. They work but currently don’t
support MVC. We know that it is quite simple to add MVC support to ASP.NET Core web application
using the AddMvc and UseMvc extension methods. With the
ExtCore.Mvc [http://docs.extcore.net/en/latest/extensions/extcore_mvc.html] extension
it is even a bit easier.

Modify Main Web Application

Open NuGet Package Manager and add dependency on the ExtCore.Mvc package.

Now open Startup.cs file and remove the applicationBuilder.Run method calling from the Configure
one, we don’t need it anymore.

Now your Startup class should look like this:

public class Startup
{
 private string extensionsPath;

 public Startup(IHostingEnvironment hostingEnvironment, IConfiguration configuration)
 {
 this.extensionsPath = hostingEnvironment.ContentRootPath + configuration["Extensions:Path"];
 }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddExtCore(this.extensionsPath);
 }

 public void Configure(IApplicationBuilder applicationBuilder)
 {
 applicationBuilder.UseExtCore();
 }
}

Good. Now let’s add some MVC-related things like controller and views. Also we will add CSS file too.
It would be too obvious to add it to the main web application, so we will do that in the extension.

Modify Extension

First of all, replace dependency on ExtCore.Infrastructure with dependency
on ExtCore.Mvc.Infrastructure (same version). The easiest way to do that is manually edit Extension.csproj file:

<ItemGroup>
 <PackageReference Include="ExtCore.Mvc.Infrastructure" Version="6.0.0" />
</ItemGroup>

Create Actions folder inside the project and create UseEndpointAction class inside it. Actions is ExtCore feature
that allows extensions to execute some code inside the ConfigureServices and Configure methods of the
web application. This class should look like this:

public class UseEndpointAciton : IUseEndpointsAction
{
 public int Priority => 1000;

 public void Execute(IEndpointRouteBuilder endpointRouteBuilder, IServiceProvider serviceProvider)
 {
 endpointRouteBuilder.MapControllerRoute(name: "Default", pattern: "{controller}/{action}", defaults: new { controller = "Default", action = "Index" });
 }
}

With this code our extension registers the default route for the web application which will use it. Each
extension may register its own routes and make them have special order using the priorities.

Now we are ready to create controller and views.

Create DefaultController class and inherit it from Controller. Add simple Index action:

public class DefaultController : Controller
{
 public ActionResult Index()
 {
 return this.View();
 }
}

Create /Views/Shared/_Layout.cshtml and /Views/Default/Index.cshtml views.

_Layout.cshtml:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>@Html.Raw(this.ViewBag.Title as string)</title>
</head>
<body>
 @RenderBody()
</body>
</html>

Index.cshtml:

<h1>Hello From the Extension</h1>

We need to tell the compiler to compile these views as resources to be able to use it later. Open the
Extension.csproj file and add following lines there:

<ItemGroup>
 <EmbeddedResource Include="Views**" />
</ItemGroup>

It is enough for now. Rebuild the solution and copy Extension.dll file to the extensions folder
of the WebApplication. Run the web application:

[image: ../_images/11.png]
We can see that controller and views are resolved. Cool! Now let’s add some style to the our views.
Create default.css file inside the /Styles folder (you need to create it too):

body {
 color: red;
}

Modify the Extension.csproj file again to tell the compiler to compile the styles
too:

<ItemGroup>
 <EmbeddedResource Include="Styles**;Views**" />
</ItemGroup>

Finally, add the link to the CSS file to the Index.cshtml view:

<link href="Styles.default.css" rel="stylesheet" />

Note that resources have flat structure inside the assemblies so we need to replace / with .
(dot) in the path to the CSS file.

Rebuild the solution again and replace ExtCoreExtension.dll file, run the web application:

[image: ../_images/21.png]
As we can see, the text turns red. It means that everything works as expected. In the next tutorials
we will see how to work with the storage.

You can find the complete source of this sample project on GitHub:
ExtCore framework 6.0.0 sample MVC web application [https://github.com/ExtCore/ExtCore-Sample-Mvc].

Tutorial: Create ExtCore-Based Web Application with Storage

We are going to create modular and extendable ExtCore-based web application with data.
Please follow this tutorial [http://docs.extcore.net/en/latest/getting_started/tutorial_mvc.html]
to create ExtCore-based MVC web application first. We will use it as a base.

So, we have the main web application and extension projects. They work but currently don’t
know anything about data and storage. Let’s assume that we want our extension to display
some data (the list of persons for example) from the storage (SQLite database for example) in its
view. The ExtCore.Data [http://docs.extcore.net/en/latest/extensions/extcore_data.html]
and ExtCore.Data.EntityFramework [http://docs.extcore.net/en/latest/extensions/extcore_data_entityframework.html]
extensions will help us to achieve that goal.

In short, we should do the following:

	create the storage (SQLite database in this case);

	describe the entities (the only one Person entity in this case);

	describe the repositories to work with that entities (abstraction and one implementation for each

of the supported storages; SQLite database support only in this case);
* add logic for getting the persons from the database and displaying them.

Describe the Entities

To be able to share entities among different projects (and following the
ExtCore.Data [http://docs.extcore.net/en/latest/extensions/extcore_data.html] extension
design pattern) we will describe entity classes in the separate project.

Create new .NET Core class library project:

[image: ../_images/1.png]
Open NuGet Package Manager and add dependency on the ExtCore.Data.Entities.Abstractions version 6.0.0 package
(be sure that Include prerelease checkbox is checked).

Create Person class that implements ExtCore.Data.Entities.Abstractions.IEntity. Create
Id and Name properties. After that Person class should look like this:

public class Person : IEntity
{
 public int Id { get; set; }
 public string Name { get; set; }
}

Describe the Repositories

ExtCore.Data [http://docs.extcore.net/en/latest/extensions/extcore_data.html] extension
implements Unit of Work and Repository design patterns. It means that all the work with the storage
is performed in a single context, and it also means that every entity has its own repository that
contains all methods you need to work with it. Repositories when created are resolved automatically,
so everything we need to do is to create corresponding repositories.

To be able to share repositories among different projects (and following the
ExtCore.Data [http://docs.extcore.net/en/latest/extensions/extcore_data.html] extension
design pattern) we will describe repository classes in the separate projects (one for abstractions
and one for each of the supported storages).

Abstractions

Create new .NET Core class library project:

[image: ../_images/2.png]
Open NuGet Package Manager and add dependency on the ExtCore.Data.Abstractions version 6.0.0 package.
Also add dependency on your local Extension.Data.Entities project.

Create IPersonRepository interface that implements the ExtCore.Data.Abstractions.IRepository one.
Create All method there. After that the IPersonRepository interface should look like this:

public interface IPersonRepository : IRepository
{
 IEnumerable<Person> All();
}

SQLite Storage Support

Create one more .NET Core class library project:

[image: ../_images/3.png]
Open NuGet Package Manager and add dependency on the ExtCore.Data.EntityFramework.Sqlite version 6.0.0 package.
Also add dependency on your local Extension.Data.Abstractions project.

Create EntityRegistrar class that implements the ExtCore.Data.EntityFramework.IEntityRegistrar interface.
Override RegisterEntities method in this way:

public void RegisterEntities(ModelBuilder modelbuilder)
{
 modelbuilder.Entity<Person>(etb =>
 {
 etb.HasKey(e => e.Id);
 etb.Property(e => e.Id);
 etb.ToTable("Persons");
 }
);
}

Now create PersonRepository class that implements Extension.Data.Abstractions.IPersonRepository interface
and inherit it from the ExtCore.Data.EntityFramework.RepositoryBase<Person> class. Create All method there.
After that PersonRepository class should look like this:

public class PersonRepository : RepositoryBase<Person>, IPersonRepository
{
 public IEnumerable<Person> All()
 {
 return this.dbSet.OrderBy(p => p.Name);
 }
}

Modify Main Web Application

Now when we have everything we need to work with data and storage let’s display the list of persons
in the view.

First of all create the SQLite database with one Persons (pay attention to the case of the characters)
table and few rows. You can use SqliteBrowser [https://github.com/sqlitebrowser/sqlitebrowser] for
that.

The second step is to add ConnectionStrings:Default parameter to the appsettings.json file:

"ConnectionStrings": {
 // Please keep in mind that you have to change '\' to '/' on Linux-based systems
 "Default": "Data Source=..\\..\\..\\db.sqlite"
}

Finally, open NuGet Package Manager and add dependencies on the ExtCore.Data version 6.0.0 and
ExtCore.Data.EntityFramework.Sqlite version 6.0.0 packages.

Modify Extension

Add dependency on your local Extension.Data.Abstractions project.

Modify your DefaultController class to make it get parameter of type IStorage from the DI
in the constructor and save that object to the private variable:

public DefaultController(IStorage storage)
{
 this.storage = storage;
}

Now modify your Index action to get persons from the database and put them to the view:

public ActionResult Index()
{
 return this.View(this.storage.GetRepository<IPersonRepository>().All());
}

Now open your /Views/Default/Index.cshtml view and modify it in following way:

@model IEnumerable<Extension.Data.Entities.Person>
<h1>Hello From the Extension</h1>
@foreach (var person in this.Model)
{
 <p>@person.Name</p>
}

Rebuild the solution, put files Extension.dll, Extension.Data.Entities.dll, Extension.Data.Abstractions.dll,
and Extension.Data.EntityFramework.Sqlite.dll to the extensions folder of the WebApplication, run the web application:

[image: ../_images/4.png]
As we can see, data from the database is displayed.

You can find the complete source of this sample project on GitHub:
ExtCore framework 6.0.0 sample web application that uses a database [https://github.com/ExtCore/ExtCore-Sample-Data].

Tutorial: Registering and Using a Service Inside an Extension

Often, we need to register a service inside an extension. For example, we may want to implement
some interface in different ways and allow user to choose the implementation by using the specific extension.
ExtCore.Data extension uses this approach to provide different storages support.

We will create the main web application project, one shared project that will contain the service interface,
and 2 extension projects with the different implementations of that interface.

Create Main Web Application

Now let’s start Visual Studio and create new ASP.NET Core project:

[image: ../_images/12.png]
[image: ../_images/22.png]
Empty project is created.

Right click on your project in the Solution Explorer and open NuGet Package Manager. Switch to Browse tab and type
ExtCore.WebApplication in the Search field (be sure that Include prerelease checkbox is checked).
Click Install button:

[image: ../_images/31.png]
Also add dependency on Microsoft.Extensions.Configuration.Json package.

Create the appsettings.json file in the project root. We will use this file to provide configuration
parameters to ExtCore (such as path of the extensions folder). Now it should contain only one
parameter Extensions:Path and look like this:

{
 "Extensions": {
 // Please keep in mind that you have to change '\' to '/' on Linux-based systems
 "Path": "\\Extensions"
 }
}

Open Startup.cs file. Inside the ConfigureServices method call services.AddExtCore one. Pass the extensions
path as the parameter. Inside the Configure method call applicationBuilder.UseExtCore one with no parameters.

Now your Startup class should look like this:

public class Startup
{
 private string extensionsPath;

 public Startup(IHostingEnvironment hostingEnvironment, IConfiguration configuration)
 {
 this.extensionsPath = hostingEnvironment.ContentRootPath + configuration["Extensions:Path"];
 }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddExtCore(this.extensionsPath);
 }

 public void Configure(IApplicationBuilder applicationBuilder)
 {
 applicationBuilder.UseExtCore();
 applicationBuilder.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 }
}

That’s all, you now have ExtCore-based web application. Now we need to create the shared project
that will contain the service interface. Both the main web application and the extension projects
will have explicit dependencies on this package:

[image: ../_images/41.png]
Create the IOperation interface in this project:

public interface IOperation
{
 int Calculate(int a, int b);
}

Create Extensions

Now create 2 more projects for the service interface implementations: PlusExtension and MultiplyExtension.
Add reference on the Shared project to both of them. After that, create corresponding classes in that projects:

public class PlusOperation : IOperation
{
 public int Calculate(int a, int b)
 {
 return a + b;
 }
}

public class MultiplyOperation : IOperation
{
 int Calculate(int a, int b)
 {
 return a * b;
 }
}

After that each extension needs to register its own implementation of the IOperation interface inside the
ASP.NET Core DI. To do that we need to implement the IConfigureServicesAction interface (it is defined inside the
ExtCore.Infrastructure package, don’t forget to add the dependency). This is the example for the PlusExtension extension:

public class AddOperationAction : IConfigureServicesAction
{
 public int Priority => 1000;

 public void Execute(IServiceCollection services, IServiceProvider serviceProvider)
 {
 services.AddScoped(typeof(IOperation), typeof(PlusOperation));
 }
}

Good. We are ready for the final step.

Put it Together

First of all, add reference on the Shared project to the main web application project.
Now modify the Configure method in next way:

public void Configure(IApplicationBuilder applicationBuilder, IOperation operation)
{
 applicationBuilder.UseExtCore();
 applicationBuilder.Run(async (context) =>
 {

 await context.Response.WriteAsync(operation.Calculate(5, 10).ToString());
 }
);
}

The implementation of the IOperation interface, which is used to calculate the final value, will be provided
by the ASP.NET Core DI. Our code doesn’t know which implementation is used, it is registered by the selected extension.
To select the extension we need to copy its DLL file to the Extensions folder of the main web application,
or add implicit reference on that project.

So, let’s copy the PlusExtension.dll file to the Extensions folder and try to run our application:

[image: ../_images/5.png]
Everything works as expected. We can replace the PlusExtension.dll with the MultiplyExtension.dll, restart the
web application and the result will change.

You can find the complete source of this sample project on GitHub:
ExtCore framework 6.0.0 sample web application that registers a service inside the extension [https://github.com/ExtCore/ExtCore-Sample-Service].

Using Migrations

(It is only applicable for the ExtCore framework version 3.1.0-beta1 and higher.)

Migrations feature is only available if you are using Entity Framework Core as the ORM. To make it possible to use the Migrations tool,
please, follow these steps:

1. Create the DesignTimeStorageContextFactory class (you can use any name) and inherit it from the
ExtCore.Data.EntityFramework.DesignTimeStorageContextFactoryBase<T> [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Data.EntityFramework/DesignTimeStorageContextFactoryBase.cs#L18]
one (here T is the type of the storage context you are using). You don’t need to implement any methods in this class:

public class DesignTimeStorageContextFactory : DesignTimeStorageContextFactoryBase<StorageContext>
{
}

2. Initialize the StorageContextOptions.MigrationsAssembly property with the name of the assembly (project) where
the DesignTimeStorageContextFactory class is created:

services.Configure<StorageContextOptions>(options =>
 {
 options.ConnectionString = this.configurationRoot.GetConnectionString("Default");
 options.MigrationsAssembly = typeof(DesignTimeStorageContextFactory).GetTypeInfo().Assembly.FullName;
 }
);

	Call the DesignTimeStorageContextFactory.Initialize() static method after the StorageContextOptions class configuration:

DesignTimeStorageContextFactory.Initialize(services.BuildServiceProvider());

That’s all, now you can use the Migrations tool.

Using Identity

(It is only applicable for the ExtCore framework version 3.1.0-beta2 and higher.)

Please, take a look at this sample [https://github.com/ExtCore/ExtCore-Sample-Identity].

Fundamentals

	Working Principle

	Initialization and Startup

	Debugging ExtCore Extensions

	Getting and Reading Logs

	Default Assembly Provider

	Unified Extension Structure

	Usage for authorization middleware

Working Principle

ExtCore is included into a project using two extension methods: AddExtCore and UseExtCore.

First of all, inside the AddExtCore method ExtCore discovers and loads the assemblies (using the implementation of the
IAssemblyProvider [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.WebApplication/IAssemblyProvider.cs#L13] interface).
When the assemblies are discovered and loaded it caches it inside the
ExtensionManager [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Infrastructure/ExtensionManager.cs#L15] static class.
This class is the entry point for the ExtCore type discovery mechanism, all extensions can use it to get the information
about each other.

Then, using the AddExtCore and UseExtCore methods, ExtCore executes user actions (code fragments) from all the extensions
inside the ConfigureServices and Configure methods. These actions are defined by the implementations of the
IConfigureServicesAction [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Infrastructure/Actions/IConfigureServicesAction.cs#L13] and
IConfigureAction [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Infrastructure/Actions/IConfigureAction.cs#L13]
interfaces and allows developer to specify the execution order by using the Priority property.
This is one of the key features, because it allows the extensions to execute their own code during the
web application initialization and startup. They can register services, add middleware etc.

ExtCore.Mvc extension also defines two more action interfaces which might be used to configure MVC:
IAddMvcAction [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Mvc.Infrastructure/Actions/IAddMvcAction.cs#L13] and
IUseMvcAction [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Mvc.Infrastructure/Actions/IUseMvcAction.cs#L13] ones.

ExtCore.Mvc extension discovers all the views (added as resources and/or precompiled) and static content (added as resources)
and make it accessible using the
custom implementation [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Mvc/CompositeFileProvider.cs#L20]
of the IFileProvider interface.

Initialization and Startup

ExtCore initialization and startup process consists of running two extension methods:
AddExtCore and UseExtCore. These methods must be called inside the ConfigureServices and Configure methods
of the web application’s Startup class:

public void ConfigureServices(IServiceCollection services)
{
 services.AddExtCore("absolute path to your extensions");
}

public void Configure(IApplicationBuilder applicationBuilder, IHostingEnvironment hostingEnvironment)
{
 if (hostingEnvironment.IsDevelopment())
 {
 applicationBuilder.UseDeveloperExceptionPage();
 applicationBuilder.UseDatabaseErrorPage();
 }

 applicationBuilder.UseExtCore();
}

AddExtCore Method

This method discovers and loads the assemblies and caches them into the
ExtensionManager [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Infrastructure/ExtensionManager.cs#L15] class.
Then it executes code from all the extensions [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.WebApplication/Extensions/ServiceCollectionExtensions.cs#L64]
inside the ConfigureServices method using the implementations of the
IConfigureServicesAction [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Infrastructure/Actions/IConfigureServicesAction.cs#L13]
interface.

UseExtCore Method

This method executes code from all the extensions [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.WebApplication/Extensions/ApplicationBuilderExtensions.cs#L32]
inside the Configure method using the implementations of the
IConfigureAction [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Infrastructure/Actions/IConfigureAction.cs#L13]
interface.

Debugging ExtCore Extensions

To be able to debug an ExtCore extension you need to add the explicit project references to all of its projects
to the main web application. When development process is complete, you may remove that references and use the
extension as the DLL files.

Getting and Reading Logs

ExtCore writes logs while initialization and startup process so you can understand what is
going on and where the problem is when something goes wrong. Also using logs you can see
which assemblies have been discovered and loaded, which actions have been executed by extensions
in the ConfigureServices and Configure methods etc.

Getting Logs

By default ASP.NET Core web application (as well as ExtCore-based one) doesn’t have any logger
configured, so logs are not shown. To configure the logger, you can follow
this article [https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging] or just add next
line of code in the constructor of your Startup class:

public Startup(ILoggerFactory loggerFactory)
{
 loggerFactory.AddConsole();
}

This approach is used in our sample so you can take a look at it
there [https://github.com/ExtCore/ExtCore-Sample/blob/master/src/WebApplication/Startup.cs#L27].
It is important to do that in the constructor and not in the Configure method, because otherwise
you will miss the logs before the Configure method is called.

It is an excerpt from our sample application log:

info: ExtCore.WebApplication[0]
 Discovering and loading assemblies from path 'C:\Path\WebApplication\Extensions'
info: ExtCore.WebApplication[0]
 Assembly 'WebApplication.ExtensionA, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'WebApplication.ExtensionB.Data.Abstractions, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'WebApplication.ExtensionB.Data.Entities, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'WebApplication.ExtensionB.Data.EntityFramework.Sqlite, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'WebApplication.ExtensionB, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Discovering and loading assemblies from DependencyContext
info: ExtCore.WebApplication[0]
 Assembly 'WebApplication, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'ExtCore.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'ExtCore.Data.Abstractions, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'ExtCore.Data.Entities.Abstractions, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'ExtCore.Data.EntityFramework, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'ExtCore.Data.EntityFramework.Sqlite, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'ExtCore.Infrastructure, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'ExtCore.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'ExtCore.Mvc.Infrastructure, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'ExtCore.WebApplication, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'Newtonsoft.Json, Version=9.0.0.0, Culture=neutral, PublicKeyToken=30ad4fe6b2a6aeed' is discovered and loaded
info: ExtCore.WebApplication[0]
 Assembly 'Remotion.Linq, Version=2.1.0.0, Culture=neutral, PublicKeyToken=fee00910d6e5f53b' is discovered and loaded
info: ExtCore.WebApplication[0]
 Executing ConfigureServices action 'ExtCore.Data.Actions.AddStaticFilesAction'
info: ExtCore.WebApplication[0]
 Executing ConfigureServices action 'ExtCore.Data.EntityFramework.Actions.AddStaticFilesAction'
info: ExtCore.WebApplication[0]
 Executing ConfigureServices action 'ExtCore.Mvc.Actions.AddStaticFilesAction'
info: ExtCore.WebApplication[0]
 Executing ConfigureServices action 'ExtCore.Mvc.Actions.AddMvcAction'
info: ExtCore.WebApplication[0]
 Executing Configure action 'ExtCore.Mvc.Actions.UseStaticFilesAction'
info: ExtCore.WebApplication[0]
 Executing Configure action 'ExtCore.Mvc.Actions.UseMvcAction'
info: ExtCore.Mvc[0]
 Executing UseMvc action 'ExtensionA.Actions.UseMvcAction'
info: ExtCore.Mvc[0]
 Executing UseMvc action 'ExtensionB.Actions.UseMvcAction'

Reading Logs

Let’s take a look at the log output.

The first 2 lines indicate that the process of the assemblies loading from the specific path has begun. The path is displayed too,
so you can check it:

info: ExtCore.WebApplication[0]
 Discovering and loading assemblies from path 'C:\Path\WebApplication\Extensions'

Then we can see few lines that show the assemblies that are discovered and loaded.

The next 2 lines indicate that the process of the assemblies loading from the DependencyContext has begun:

info: ExtCore.WebApplication[0]
 Discovering and loading assemblies from DependencyContext

Discovered and loaded assemblies are displayed again.

After the assemblies are discovered and resolved, user actions inside the ConfigureServices and Configure methods
are executed:

info: ExtCore.WebApplication[0]
 Executing ConfigureServices action 'ExtCore.Data.Actions.AddStaticFilesAction'
info: ExtCore.WebApplication[0]
 Executing ConfigureServices action 'ExtCore.Data.EntityFramework.Actions.AddStaticFilesAction'
info: ExtCore.WebApplication[0]
 Executing ConfigureServices action 'ExtCore.Mvc.Actions.AddStaticFilesAction'
info: ExtCore.WebApplication[0]
 Executing ConfigureServices action 'ExtCore.Mvc.Actions.AddMvcAction'
info: ExtCore.WebApplication[0]
 Executing Configure action 'ExtCore.Mvc.Actions.UseStaticFilesAction'
info: ExtCore.WebApplication[0]
 Executing Configure action 'ExtCore.Mvc.Actions.UseMvcAction'
info: ExtCore.Mvc[0]
 Executing UseMvc action 'ExtensionA.Actions.UseMvcAction'
info: ExtCore.Mvc[0]
 Executing UseMvc action 'ExtensionB.Actions.UseMvcAction'

It is easy to understand what is going on and what is executed and to check the execution order.

Initialization and startup process is now finished.

Default Assembly Provider

ExtCore uses the default implementation [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.WebApplication/AssemblyProvider.cs#L21]
of the IAssemblyProvider interface [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.WebApplication/IAssemblyProvider.cs#L13]
to discover and load the assemblies.

The instance of that class is created and set in the constructor of the
Startup class [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.WebApplication/Startup.cs#L33]. All the ExtCore-based
web applications must inherit their Startup classes from this one.

There is another one [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.WebApplication/Startup.cs#L42]
overloaded constructor which gets the second parameter of the IAssemblyProvider type. You can use it to specify
your custom assembly provider. Also, you can use the existing one but change the
IsCandidateAssembly [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.WebApplication/AssemblyProvider.cs#L44] or
IsCandidateCompilationLibrary [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.WebApplication/AssemblyProvider.cs#L48] filter.

Unified Extension Structure

Here X is your application name and Y is your extension name:

	X.Y;

	X.Y.Data.Entities;

	X.Y.Data.Abstractions;

	X.Y.Data.SpecificStorageA;

	X.Y.Data.SpecificStorageB;

	X.Y.Data.SpecificStorageC;

	X.Y.Frontend;

	X.Y.Backend;

	etc.

For example, we can take a look at ExtCore.Data extension structure:

	ExtCore.Data;

	ExtCore.Data.Entities.Abstractions;

	ExtCore.Data.Abstractions;

	ExtCore.Data.EntityFramework;

	ExtCore.Data.EntityFramework.PostgreSql;

	ExtCore.Data.EntityFramework.Sqlite;

	ExtCore.Data.EntityFramework.SqlServer.

The idea is that your extension is logically split into the projects. Entities are just entities (Data.Entities project),
they don’t need to have any links to the different extension’s projects (but entities project may have dependency on the entities project
of the different extension to be able to work with them; for example, your Statistics extension Report entity
may need to be able to work with a Product entity from the Ecommerce extension).

Repository abstractions are put inside the Data.Abstractions. This project needs to know about the Data.Entities one, and that’s all.
All the code that needs to work with the entities should do that using the repository abstractions,
without any explicit links on the concrete implementations.

If your extension has some services, split them into the abstractions (Services.Abstractions) and the default implementations (Services.Default).

Main extension project shouldn’t contain any shared content, like utility classes etc. None of the other extension projects
should have dependencies on it. The purpose of the main extension’s project is to keep extension metadata and to resolve and register services.
It should look for the existing implementations of the given services using the ExtensionManager class and register them in this way,
without having an explicit dependency on the implementations project (please look how it is done in the ExtCore.Data extension).
In this case it will be possible to replace the services implementations just by copying another DLL file into the extensions folder
or adding some NuGet package.

Usage for authorization middleware

If you must use Microsoft.AspNetCore.Authorization in your application, the call must be made in an extension.

Extcore uses internal priorities that start at 10000.

You must therefore give a priority higher than this number when calling Authorize.

using System;
using ExtCore.Infrastructure.Actions;
using Microsoft.AspNetCore.Builder;

namespace Barebone.Actions
{
 public class UseAuthorizationAction : IConfigureAction
 {
 public void Execute(IApplicationBuilder applicationBuilder, IServiceProvider serviceProvider)
 {
 applicationBuilder.UseAuthorization();
 }

 public int Priority => 10001;
 }
}

Otherwise, you will get an meaningful error stating that ASP.NET Core cannot find the middleware.

Extensions

	ExtCore.FileStorage

	ExtCore.Data

	ExtCore.Mvc

	ExtCore.Events

ExtCore.FileStorage

This extension allows developer to work with a file storage through the abstraction layer and easily replace,
let’s say, file system storage with the Dropbox or Azure Blob Storage ones without changing any code.

Packages

	ExtCore.FileStorage;

	ExtCore.FileStorage.Abstractions;

	ExtCore.FileStorage.Dropbox;

	ExtCore.FileStorage.FileSystem.

ExtCore.Data

By default, ExtCore doesn’t know anything about data, but you can use ExtCore.Data extension to have
unified approach to working with data and the single data storage context among all the extensions.
Data storage might be represented by a database, a web API, a file structure or anything else.

Currently ExtCore.Data supports MySQL, PostgreSql, SQLite, and SQL Server with Dapper or Entity Framework Core as ORM.
You can add your own database or ORM support.

Packages

	ExtCore.Data;

	ExtCore.Data.Abstractions;

	ExtCore.Data.Entities.Abstractions;

	ExtCore.Data.Dapper;

	ExtCore.Data.Dapper.MySql;

	ExtCore.Data.Dapper.PostgreSql;

	ExtCore.Data.Dapper.Sqlite;

	ExtCore.Data.Dapper.SqlServer;

	ExtCore.Data.EntityFramework;

	ExtCore.Data.EntityFramework.MySql;

	ExtCore.Data.EntityFramework.PostgreSql;

	ExtCore.Data.EntityFramework.Sqlite;

	ExtCore.Data.EntityFramework.SqlServer.

ExtCore.Mvc

By default, ExtCore web applications are not MVC ones. MVC support is provided for them by ExtCore.Mvc extension.
This extension initializes MVC, makes it possible to use controllers, view components, views (added as resources
and/or precompiled), static content (added as resources) from other extensions etc.

Also, it allows extension to register custom routes in a specific order.

Packages

	ExtCore.Mvc;

	ExtCore.Mvc.Infrastructure.

ExtCore.Events

It can be used by the extension to notify the code in this or any other extension about some events.

Packages

	ExtCore.Events.

Migration

	4.x.x to 5.x.x

	5.x.x to 6.x.x

4.x.x to 5.x.x

There are 3 main differences between ExtCore 4.x.x and 5.x.x.

.NET Core 3.0 applications can’t run on top of the full .NET Framework.

Razor runtime compilation is now (starting from .NET Core 3.0) turned off by default.
So far (6.0.0), ExtCore does not support Razor runtime compilation at all, so views and pages added as resources won’t be resolved anymore.

To make them work you have to convert all the projects containing Razor files to
Razor class libraries [https://docs.microsoft.com/en-us/aspnet/core/razor-pages/ui-class?view=aspnetcore-3.0&tabs=visual-studio].

4.x.x:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.2</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <EmbeddedResource Include="Views**;Images**" />
 </ItemGroup>

 ...

</Project>

5.x.x:

<Project Sdk="Microsoft.NET.Sdk.Razor">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <AddRazorSupportForMvc>true</AddRazorSupportForMvc>
 </PropertyGroup>

 <ItemGroup>
 <EmbeddedResource Include="Images**" />
 </ItemGroup>

 ...

</Project>

Routes are replaced with endpoints, so ExtCore.Mvc.Infrastructure.Actions.IUseMvcAction is replaced with
ExtCore.Mvc.Infrastructure.Actions.IUseEndpointsAction.

5.x.x to 6.x.x

Migration only needs target framework to be changed from netcoreapp3.1 to net5.0.

Index

 _images/32.png
ﬂ WebApplication - Microsoft Visual Studio \ &) & Quick Launch (Ctrl+Q) P - B X

File Edit View Project Build Debug Team Tools Test Analyze Window Help Dmitry Sikorsky ~ m
Bl Debug ~ Any CPU ~ P ISExpress ~ & ¢ -~ A _
NuGet WebApplcation X > e -8 x
- -5 a@ - -
. . 0 =]
Jrowse Installed Updates NuGet Package Manager: WebApplication QF- ©-596 *
Search Solution Explorer (Ctrl+;) P~
ExtCore.WebApplication X v o D Include prerelease Package source: nuget.org ~ Y] Solution "WebApplication' (1 project)

4 5] WebApplication
g . ENe ted Servi
. ExtCore.WebApplication ¥, onnecec senvices

=& Dependencies

ExtCore.WebApplication by Dmitry Sikorsky, 19,1K downloads v4.0.0 M Properties

Free, open source and cross-platform framework for creating modular and extendable web applications based o... T st men

Version: Latest stable 4.0.0 v Install

C# Program.cs
C# Startup.cs

vV v vV

@ Options

Description

Free, open source and cross-platform framework for creating
modular and extendable web applications based on ASP.NET Core.
Version: 4.0.0

Author(s): Dmitry Sikorsky

Date published: Wednesday, January 2, 2019 (1/2/2019)
Project URL: http://extcore.net/

Report Abuse: https://www.nuget.org/packages/
ExtCore.WebApplication/4.0.0/ReportAbuse

Tags:

Dependencies

.NETStandard,Version=v2.0
Microsoft.Extensions.DependencyModel (> = 2.1.0)
System.Runtime.Loader (> = 4.3.0)
ExtCore.Infrastructure (>= 4.0.0)

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses to, third-party packages.

D Do not show this again

Solution Explorer | Team Explorer

Output Error List

_images/4.png
localhost X I+

é % O | localhost:7914

Hello From the Extension

Christopher
David

James

_images/3.png
Add New Project

> Recent Sort by: Default) Search (Ctrl+E)
4 |nstalled -
: Type: Visual C#
oﬁ Console App (NET Core) Visual C# yP
4 \/isual C# = A project for creating a class library that
Get Started Er;i! Class Library (NET Core) Visual C# targets .NET Core.
Windows Desktop rca
b Web a_] MSTest Test Project (.NET Core) Visual C#
NET Core |-c“ NUnit Test Project (.NET Core) Visual C#
nit Test Project (. ore (HVE]
NET Standard B !
(3
Hene ﬁ xUnit Test Project (NET Core) Visual C#
Test
WCF @ ASP.NET Core Web Application Visual C#
P Visual Basic
D Visual F#
SQL Server
P Azure Data Lake
P Azure Stream Analytics
P Online
Not finding what you are looking for?
Open Visual Studio Installer
Name: | Extension.Data.EntityFramework.Squte‘
Location: C:\Users\Dmitry Sikorsky\Desktop\WebApplication v Browse...

_images/31.png
ﬂ WebApplication - Microsoft Visual Studio \ &) & Quick Launch (Ctrl+Q) P - B X

File Edit View Project Build Debug Team Tools Test Analyze Window Help Dmitry Sikorsky ~ m
Bl Debug ~ Any CPU ~ P ISExpress ~ & ¢ -~ A _
NuGet WebApplcation X > e -8 x
- -5 a@ - -
. . 0 =]
Jrowse Installed Updates NuGet Package Manager: WebApplication QF- ©-596 *
Search Solution Explorer (Ctrl+;) P~
ExtCore.WebApplication X v o D Include prerelease Package source: nuget.org ~ Y] Solution "WebApplication' (1 project)

4 5] WebApplication
g . ENe ted Servi
. ExtCore.WebApplication ¥, onnecec senvices

=& Dependencies

ExtCore.WebApplication by Dmitry Sikorsky, 19,1K downloads v4.0.0 M Properties

Free, open source and cross-platform framework for creating modular and extendable web applications based o... T st men

Version: Latest stable 4.0.0 v Install

C# Program.cs
C# Startup.cs

vV v vV

@ Options

Description

Free, open source and cross-platform framework for creating
modular and extendable web applications based on ASP.NET Core.
Version: 4.0.0

Author(s): Dmitry Sikorsky

Date published: Wednesday, January 2, 2019 (1/2/2019)
Project URL: http://extcore.net/

Report Abuse: https://www.nuget.org/packages/
ExtCore.WebApplication/4.0.0/ReportAbuse

Tags:

Dependencies

.NETStandard,Version=v2.0
Microsoft.Extensions.DependencyModel (> = 2.1.0)
System.Runtime.Loader (> = 4.3.0)
ExtCore.Infrastructure (>= 4.0.0)

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses to, third-party packages.

D Do not show this again

Solution Explorer | Team Explorer

Output Error List

_images/5.png
B localhost

& > O | loahosteoss

15

_images/51.png
- localhost

€ > 0

Some name

| localhost: 7914

_images/41.png
Add New Project

> Recent Sort by: Default) Search (Ctrl+E)
4 |nstalled R
oﬁ Console App (NET Core) Visual C# Type: Visual C#
4 \/isual C# = A project for creating a class library that
Get Started 5‘5! Class Library (NET Core) Visual C# targets .NET Core.
Windows Desktop rca ; ;
b Web a_] MSTest Test Project (.NET Core) Visual C#
NET Core |-c“ NUnit Test Project (.NET Core) Visual C#
nit Test Project (. ore (HVE]
NET Standard B !
(3
Hene ﬁ xUnit Test Project (NET Core) Visual C#
Test
WCF @ ASP.NET Core Web Application Visual C#
P Visual Basic
D Visual F#
SQL Server
P Azure Data Lake
P Azure Stream Analytics
P Online
Not finding what you are looking for?
Open Visual Studio Installer
Name: |Shared‘
Location: C:\Users\Dmitry Sikorsky\Desktop\WebApplication v Browse...

_images/42.png
Add New Project

> Recent Sort by: Default v Search (Ctrl+E)
4 |nstalled . i
oﬁ Console App (NET Core) Visual C# Type: Visual C#
4 \/isual C# = A project for creating a class library that
Get Started 5‘5! Class Library (NET Core) Visual C# targets .NET Core.
Windows Desktop rca ; ;
b Web a_] MSTest Test Project (.NET Core) Visual C#
NET Core |-c“ NUnit Test Project (.NET Core) Visual C#
nit Test Project (. ore [HVE]
.NET Standard B !
(3
Hene ﬁ xUnit Test Project (NET Core) Visual C#
Test
WCF @ ASP.NET Core Web Application Visual C#
P Visual Basic
P Visual F#
SQL Server
P Azure Data Lake
P Azure Stream Analytics
P Online
Not finding what you are looking for?
Open Visual Studio Installer
Name: |Extension‘
Location: C:\Users\Dmitry Sikorsky\Desktop\WebApplication v Browse...

_images/extcore.png

_static/ajax-loader.gif

_images/21.png
localhost X 4+ = X

e) | localhost: 7914 * | = :/, @

Hello From the Extension

_images/22.png
New ASP.NET Core Web Application - WebApplication

.NET Core ¥ | ASP.NET Core 2.2 v | Learn more

0 B OB OB

Empty Web Web Razor Class
Application Application Library
(Model-View-
Controller)

D & &

Angular React,js React.js and

Redux

Get additional project templates

[| Enable Docker Support (Requires Docker for Windows)

0OS: | Windows

Configure for HTTPS

An empty project template for creating an ASP.NET
Core application. This template does not have any
content in it.

Learn more

Author: Microsoft
Source: SDK 2.2.101

Authentication: No Authentication

Change Authentication

_images/13.png
New Project

> Recent Sort by: Default) Search (Ctrl+E) P~
4 |nstalled -
: Type: Visual C#
oﬁ Console App (NET Core) Visual C# yP
4 \/isual C# c Project templates for creating ASP.NET
Get Started g:i! Class Library (.NET Core) Visual C# Core applications for Windows, Linux and
e Deskt macOS using .NET Core or .NET
indows Desktop c#
b Web ﬁ_] MSTest Test Project (NET Core) Visual C# \I;\r,arseAv;:)rk. ((j:rse.atel Rzzor P(Z%:; MVC,
e , and Single Page
.NET Core c# Applications.
ﬁ NUnit Test Project (NET Core) Visual C#
NET Standard
(3
Hene r xUnit Test Project (NET Core) Visual C#
)
Test
WCF @ ASP.NET Core Web Application Visual C#
P Visual Basic
D Visual F#
SQL Server
P Azure Data Lake
P Azure Stream Analytics
P Other Project Types
P Online
Not finding what you are looking for?
Open Visual Studio Installer
Name: |WebApp|ication‘ |
Location: C:\Users\Dmitry Sikorsky\Desktop\ ~ Browse...
Solution name: WebApplication Create directory for solution

l:‘ Create new Git repository

_images/2.png
Add New Project

> Recent Sort by: Default) Search (Ctrl+E)
4 |nstalled R
oﬁ Console App (NET Core) Visual C# Type: Visual C#
4 \/isual C# = A project for creating a class library that
Get Started 5‘5! Class Library (NET Core) Visual C# targets .NET Core.
Windows Desktop rca ; ;
b Web a_] MSTest Test Project (.NET Core) Visual C#
NET Core |-c“ NUnit Test Project (.NET Core) Visual C#
nit Test Project (. ore (HVE]
NET Standard B !
(o3
Hene ﬁ xUnit Test Project (NET Core) Visual C#
Test
WCF @ ASP.NET Core Web Application Visual C#
P Visual Basic
D Visual F#
SQL Server
P Azure Data Lake
P Azure Stream Analytics
P Online
Not finding what you are looking for?
Open Visual Studio Installer
Name: | Extension.Data.Abstractions‘
Location: C:\Users\Dmitry Sikorsky\Desktop\WebApplication v Browse...

_images/23.png
New ASP.NET Core Web Application - WebApplication

.NET Core ¥ | ASP.NET Core 2.2 v | Learn more

0 B OB OB

Empty Web Web Razor Class
Application Application Library
(Model-View-
Controller)

D & &

Angular React,js React.js and

Redux

Get additional project templates

[| Enable Docker Support (Requires Docker for Windows)

0OS: | Windows

Configure for HTTPS

An empty project template for creating an ASP.NET
Core application. This template does not have any
content in it.

Learn more

Author: Microsoft
Source: SDK 2.2.101

Authentication: No Authentication

Change Authentication

nav.xhtml

 Table of Contents

 		
 ExtCore Framework

 		
 Introduction

 		
 Getting Started

 		
 Samples

 		
 Tutorial: Create Simple ExtCore-Based Web Application

 		
 Tutorial: Create ExtCore-Based MVC Web Application

 		
 Tutorial: Create ExtCore-Based Web Application with Storage

 		
 Tutorial: Registering and Using a Service Inside an Extension

 		
 Using Migrations

 		
 Using Identity

 		
 Fundamentals

 		
 Working Principle

 		
 Initialization and Startup

 		
 Debugging ExtCore Extensions

 		
 Getting and Reading Logs

 		
 Default Assembly Provider

 		
 Unified Extension Structure

 		
 Usage for authorization middleware

 		
 Extensions

 		
 ExtCore.FileStorage

 		
 ExtCore.Data

 		
 ExtCore.Mvc

 		
 ExtCore.Events

 		
 Migration

 		
 4.x.x to 5.x.x

 		
 5.x.x to 6.x.x

_images/11.png
localhost X 4+ = X

e) | localhost: 7914 * | = :/, @

Hello From the Extension

_static/comment.png

_images/12.png
New Project

> Recent Sort by: Default) Search (Ctrl+E) P~
4 |nstalled -
: Type: Visual C#
oﬁ Console App (NET Core) Visual C# yP
4 \/isual C# c Project templates for creating ASP.NET
Get Started g:i! Class Library (.NET Core) Visual C# Core applications for Windows, Linux and
e Deskt macOS using .NET Core or .NET
indows Desktop c#
b Web ﬁ_] MSTest Test Project (NET Core) Visual C# \I;\r,arseAv;:)rk. ((j:rse.atel Rzzor P(Z%:; MVC,
e , and Single Page
.NET Core c# Applications.
ﬁ NUnit Test Project (NET Core) Visual C#
NET Standard
(3
Hene r xUnit Test Project (NET Core) Visual C#
)
Test
WCF @ ASP.NET Core Web Application Visual C#
P Visual Basic
D Visual F#
SQL Server
P Azure Data Lake
P Azure Stream Analytics
P Other Project Types
P Online
Not finding what you are looking for?
Open Visual Studio Installer
Name: |WebApp|ication‘ |
Location: C:\Users\Dmitry Sikorsky\Desktop\ ~ Browse...
Solution name: WebApplication Create directory for solution

l:‘ Create new Git repository

_static/down-pressed.png

_static/comment-bright.png

_images/1.png
Add New Project

> Recent Sort by: Default v Search (Ctrl+E)
4 |nstalled R
oﬁ Console App (NET Core) Visual C# Type: Visual C#
4 \/isual C# = A project for creating a class library that
Get Started 5‘5! Class Library (NET Core) Visual C# targets .NET Core.
Windows Desktop c#
b Web ﬁ_] MSTest Test Project (.NET Core) Visual C#
.NET Core rc“
NUnit Test Project (NET Core Visual C#
NET Standard B ject (!
(o3
Hene ﬁ xUnit Test Project (NET Core) Visual C#
Test
WCF @ ASP.NET Core Web Application Visual C#
P Visual Basic
D Visual F#
SQL Server
P Azure Data Lake
P Azure Stream Analytics
P Online
Not finding what you are looking for?
Open Visual Studio Installer
Name: | Extension.Data.Entities‘
Location: C:\Users\Dmitry Sikorsky\Desktop\WebApplication v Browse...

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/up-pressed.png

_static/up.png

